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ii



iii

Acknowledgments

Most of all, I want to express my gratitude to my supervisor for his helpfulness in every
situation and his calmness in solving my problems. I also want to thank my parents for their
financial and mental support, my boyfriend whose tireless efforts ensured that I was fully
focused on my academic endeavors, my sisters who were always there when I needed them,
and last but not least, my friends who supported me even when I didn’t believe in myself.



iv



BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

491983 Personal ID number:  Zeleňáková  Kamila Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Open Informatics Study program: 

Artificial Intelligence and Computer Science Specialisation: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Radioactive Hotspots Identification by an Unmanned Aerial Vehicle  

Bachelor’s thesis title in Czech: 

Identifikace ohnisek radioaktivního záření pomocí autonomního dronu  

Guidelines: 

1) Familiarize yourself with the Timepix3 radiation event detector and measurement format (https://github.com/rospix/rospix3), 
and the simulation model of the sensor for the MRS UAV system [1]. 
2) Study the available methods for area mapping and data collection by an autonomous robot. 
3) Design a method for creating a mapping flight path over a user-specified area (convex polygon). 
4) Propose a data structure to associate the radiation measurements with the corresponding world coordinates based on 
the odometry of the robot. 
5) Implement the algorithm [2] to determine the number of radioactive hotspots in the data structure obtained from systematic 
area mapping. 
6) Evaluate the proposed method for radiation hotspots identification in a simulated environment and on real-world datasets. 
Discuss the potential limits of this approach with respect to the number of radiation sources and their mutual distances. 

Bibliography / sources: 

[1] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert and M. Saska. The MRS UAV System: Pushing the Frontiers 
of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles. Journal 
of Intelligent & Robotic Systems 102(26):1–28, May 2021. 
[2] Melnykov, V., & Melnykov, I. (2012). Initializing the EM algorithm in Gaussian mixture models with an unknown number 
of components. Computational Statistics & Data Analysis, 56(6), 1381-1395. 
[3] T. Baca, P. Stibinger, D. Doubravova, D. Turecek, J. Solc, J. Rusnak, M. Saska and J. Jakubek. Gamma Radiation 
Source Localization for Micro Aerial Vehicles with a Miniature Single-Detector Compton Event Camera. In 2021 International 
Conference on Unmanned Aircraft Systems (ICUAS). June 2021, 338–346. 
[4] Morelande, M. R., & Skvortsov, A. (2009, July). Radiation field estimation using a gaussian mixture. In 2009 12th 
International Conference on Information Fusion (pp. 2247-2254). IEEE. 
[5] Newaz, A. A. R., Jeong, S., Lee, H., Ryu, H., & Chong, N. Y. (2016). UAV-based multiple source localization and 
contour mapping of radiation fields. Robotics and Autonomous Systems, 85, 12-25. 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



Name and workplace of bachelor’s thesis supervisor: 

Ing. Petr Štibinger    Multi-robot Systems  FEE 

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   26.05.2023 Date of bachelor’s thesis assignment:   27.01.2023 

Assignment valid until:   22.09.2024 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Tomáš Svoboda, Ph.D. 

Head of department’s signature 
Ing. Petr Štibinger 
Supervisor’s signature 

III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



vii

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of the information used within it in accordance with the methodical instructions
for observing the ethiclal principles in the preparation of university theses.

Prague, May 26, 2023

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kamila Zeleňáková
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Abstract

The thesis focuses on utilizing an unmanned aerial vehicle (UAV) equipped with a
Timepix3 radiation sensor to identify radioactive hotspots. The primary goal of the
thesis is to determine the correct number of sources within a predefined search area
and accurately determine their locations. For the search itself, the thesis employs
an Expectation–Maximization algorithm with a specialized initialization approach
based on a Gaussian mixture model. This initialization method estimates the number
of components present in the model. For data collection, the UAV autonomously
flies through the designated area following a generated flight plan and captures
radioactive particles. The position of the drone at the time of particle capture is
recorded. Once a sufficient number of particles have been collected, an algorithm
is triggered to search for radiation hotspots. The sources can be searched for in
real–time during the flight and additionally, after the experiment is completed.

Keywords Radioactivity, Unmanned Aerial Vehicles, Timepix3, EM Algorithm,
Bayes Information Criterion, Path Planning
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Abstrakt

Práce se věnuje identifikaci ohnisek radioaktivity pomoćı bezpilotńıho letounu
(UAV) vybaveným radiačńım senzorem Timepix3. Práce se zaměřuje předevš́ım na
nalezeńı správného počtu zdroj̊u, které se nacháźı v prohledávané předem defino-
vané oblasti a následným určeńım jejich polohy. Pro samotné vyhledáváńı se v práci
využ́ıvá EM algoritmus se speciálńı inicializaćı, která pracuje s Gausovským mod-
elem a odhaduje počet komponent, které se v modelu nacházej́ı. Pro sb́ıráńı dat
dron autonomně prolétá oblast podle vygenerovaného letového plánu a zachycuje
radioaktivńı částice. Při zachyceńı částice se ukládá poloha drona, ve které byla
částice zachycena. Když je nasb́ıráno dostatečné množstv́ı částic, spust́ı se algo-
ritmus na vyhledáváńı radiačńıch ohnisek. Zdroje lze vyhledávat v reálném čase i
dodatečně po ukončeńı experimentu.

Kĺıčová slova Radioaktivita, Bezpilotńı Letouny, Timepix3, EM Algoritmus,
Bayesovo Informačńı Kritérium, Plánováńı Cesty
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Chapter 1

Introduction

Nowadays, the word robotics is increasingly used in connection with various aspects
of everyday life. It provides us with greater convenience and efficiency. Robotic devices can
perform tasks faster and more accurately than humans, freeing up our time and allowing us
to focus on more meaningful and fulfilling aspects of life. Unmanned aerial vehicles (UAVs),
also known as drones, have become one of the most significant technological advances of the
21st century. The term UAV refers to a pilotless aircraft, a flying machine without an onboard
human pilot [1]. With increasing accessibility and affordability, they are becoming increasingly
popular in everyday life and research activity. UAVs offer significant advantages when used
for aerial surveillance, reconnaissance, and inspection in complex and dangerous environments
[2].

As mentioned above, UAVs have found applications in situations dangerous to humans.
This scenario may include various situations, including potential exposure to ionizing radia-
tion. Several works have already dealt with the problem of identifying radioactive hotspots
[3]–[5]. Drones are suitable for this purpose mainly because they can explore a large area in
a short time. It reduces survey time and costs while providing comprehensive and accurate
radiation distribution data. The ability to detect radioactive materials is provided by various
sensors. The Timepix3 [6] hybrid pixel detector readout chip is used in this thesis.

Radioactive decay is often modeled by Poisson distribution, but it can be approximated
very well by Gaussian distribution at high mean rates [7]. The Gaussian distribution is a
simplification that is well-used in clustering algorithms. Clustering techniques, such as EM [8]
or K-means [9], can be used to identify and locate radioactive sources.

When the initial estimation is incorrect, the EM algorithm tends to converge to the
local maximum instead of the global maximum. Therefore, it is necessary to find an accurate
initial estimate. The EM algorithm alone cannot estimate the number of components in the
model. These problems can be efficiently solved using the emEM algorithm [10] in conjunction
with the Bayes information criterion (BIC) [11]. The proposed approach involves iteratively
executing the EM algorithm with a relaxed termination condition from different initial states.
The run that yields the highest likelihood is selected. This process is repeated for different
component numbers, and the BIC is computed. The initialization value for EM is determined
based on the model with the lowest BIC score.

This thesis introduces an initialization technique for the EM algorithm based on [12]
that addresses the challenge of handling Gaussian Mixture Model (GMM) components that
are not well separable or partially overlapping. The thesis also includes an algorithm dedicated
to generating a flight path for the UAV to map the targeted area systematically. At the end
of the thesis, the algorithms are tested on generated, simulated, and real data.

CTU in Prague Department of Cybernetics
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1.1 Related works

Unmanned aerial vehicles (UAVs) have become versatile platforms with applications in
many domains. Their ability to operate autonomously and collect data from inaccessible or
hazardous environments has opened up new possibilities in various fields, ranging from the
swarming behavior of UAVs for distributed observation of workspaces [13] to the use of stereo
thermal vision for a preliminary inspection of electrical power lines [14]. The exploration of
cave environments [15], autonomous flying into buildings in firefighting scenarios [16], multi-
UAV systems for target detection [17], and scientific experiments conducted in space [18] are
also examined.

The Fukushima disaster in 2011, triggered by a massive earthquake and subsequent
tsunami, brought to light the devastating consequences of nuclear accidents. The incident at
the Fukushima Daiichi Nuclear Power Plant in Japan resulted in releasing radioactive mate-
rials into the environment, posing significant health and safety risks to nearby communities.
For this reason, there has been a growing interest in developing technologies to locate and
mitigate radioactive sources. UAVs are an effective solution for detecting radiation in chal-
lenging areas like forests and paddy fields. With autonomous flight capabilities, UAVs assess
decontamination and investigate radioactive material migration in a single flight [19]. In [20],
two scenarios are presented with low–cost UAVs equipped with detecting sensors: detecting
the radiation level at predefined waypoints and drawing contour maps of radiation levels.
Using multiple UAVs at different altitudes enables cooperative detecting and tracking for im-
proved efficiency. In [21], they characterize the radiation field using GMM and investigate the
cumulative radiation effects with multiple sources. Other works [22], [23] focus on flying a
predefined trajectory close to the ground. The procedures mentioned above do not respond
to real–time measured data and thus do not exploit the mobility of UAVs to improve the
measurement [24].

CTU in Prague Department of Cybernetics
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Chapter 2

Preliminaries

2.1 Hardware

2.1.1 Timepix3

Figure 2.1: Picture of MiniPIX TPX3 radiation camera with Timepix3 chip [25].

The Timepix3, developed as an advancement of the Timepix chip [26], offers univer-
sal readout capabilities for both semiconductor detectors and gas-filled detectors [27]. The
Medipix3 collaboration has financially supported the engineering run of Timepix3. It repre-
sents a multi-site project involving prominent institutions such as the European Organization
for Nuclear Research (CERN), Nikhef, and the University of Bonn. In this thesis it is used
for detection of radioactive particles.

The Timepix3 chip, a 256x256 pixel readout chip organized in 128 double columns,
follows a matrix format similar to the Timepix chip. Each double column is further divided
into 64 groups of 4x2 pixels, known as superpixels (SP). Each pixel in this configuration,
measuring 55mum by 55mum, incorporates a fast-response frontend circuit ensuring precise
time measurement and high resolution. Each pixel is an autonomous detector unit capable of
individually detecting and quantifying particle interactions. Three pixel operating modes can
be selected [28]:

1. Time-of-Arrival (ToA) mode: It provides precise timing information about the im-
pact time of particles on the detector surface. Specifically, it quantifies the duration
between the beginning of the acquisition time and the moment when the particle’s sig-
nal reaches the predefined Threshold level (THL).

CTU in Prague Department of Cybernetics
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2. Time-of-Arrival and Time-over-Threshold (ToA&ToT) mode: It combines the
measurement of both the particle’s ToA and the deposited energy in a pixel. The mea-
surement of the deposited energy in a pixel from the incident particle is based on the
Wilkinson-type Analogue-to-Digital Converter. The sensed energy depends on the num-
ber of clock ticks during which the signal is above the preset discrimination level (Thresh-
old). The ToT measurement depends on time, represented by the number of clock ticks
required to discharge the accumulated charge in each pixel using a constant current.
This mode allows for simultaneous characterization of both time and energy aspects of
particle interactions.

3. Event counting and integral ToT mode: Events generating a charge above the
discrimination level are counted, and their integrated charge is measured within each
pixel during the acquisition time.

Timepix3 uses a zero suppression readout technique for data acquisition. It means that
only pixels with event data are read out. The chip has two different readout modes [6]:

1. Data-driven mode: The chip autonomously transmits data at maximum speed without
requiring external commands. Readout is constantly enabled in the SP logic.

2. Sequential mode: Data remains stored at the pixel level until an external read com-
mand is provided. This command allows parallel reading of columns from 1 to 128.

Timepix3 introduces simultaneous ToA and ToT measurements, extending the capa-
bilities of Timepix. In the data-driven mode, the readout chip sends out a data packet with
pixel coordinates, ToA&ToT immediately after the hit is processed by the pixel. During this
process, the rest of the chip is still sensitive [29].

The Medipix and Timepix detectors have found extensive applications in X-Ray and
Gamma ray applications [30]–[32], in a particle accelerator [33], at International Space Station
[34], [35], in miniaturized satellite CubeSats [36] or as such in our case in the field of radiation
source localization [4], [5], [37]. For this reason, Timepix3 is used in simulations and real
experiments in this thesis.

2.2 Software

2.2.1 Simulation enviroment

The MRS UAV System is a full-stack UAV platform with all essential capabilities for
research, development, and testing of novel methods. It offers a modular, extensible open-
source platform and a complex simulation environment.

Simulation software is a crucial tool for robotic research as it can significantly facilitate
the development and testing of algorithms. The mentioned simulation environment makes
use of the open-source Gazebo simulator. All UAV hardware elements, actuators, and various
sensors are simulated with high fidelity, ensuring coherence with real-world flight and thus
accelerating the transition between simulation and reality [38].

2.2.2 Robot Operating System

The Robot Operating System (ROS) aims to provide an abstraction over software and
hardware components of a robotic system, making applications independent of specific plat-

CTU in Prague Department of Cybernetics
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forms. It acts as middleware between individual components of robotic platforms and user-
created applications. This flexibility allows newly developed applications to be easily adapted
for robots with compatible hardware features [39].

A crucial feature of ROS is the peer-to-peer transmission of messages between indi-
vidual software components called nodes. This facilitates the connection of processes across
different hosts, ensuring efficient communication and utilizing a name service or master for
process lookup. It uses a microkernel design, employing a wide range of small tools for building
and running its components, leading to better complexity management and stability. ROS is
designed to be language-neutral, supporting multiple programming languages such as C++,
Python, Octave, and LISP, allowing developers to choose their preferred language for cod-
ing. Additionally, ROS encourages the development of independent libraries for drivers and
algorithms, enabling flexibility and avoiding dependencies. The ROS build system effectively
performs modular builds within the source code tree and benefits from using CMake, making it
comparatively easy to follow this ”thin” ideology. Lastly, ROS is a free and open-source frame-
work distributed under the BSD license, permitting the development of both non-commercial
and commercial projects [40].

Important aspects of ROS are workspaces, packages, topics, messages, and services. A
workspace refers to a set of directories containing a related ROS code set. Packages, including
a combination of code, data, and documentation, are located within the workspace. A topic
represents a named stream of messages with a defined data type. These topics implement a
publish/subscribe communication mechanism. It is important to note that all messages pub-
lished on the same topic must correspond to the same data type. Services offer an alternative
method for nodes to exchange data with each other [41]. A topic is typically utilized when
there is a need to transmit data without an expectation of receiving a response, such as in the
case of sensor data. On the other hand, a service is employed when a response is anticipated,
as seen in situations like path planning.

2.2.3 Rospix

Rospix, a minimalistic acquisition software introduced in the article [42], is designed for
FITPix and USB Lite interfaces equipped with Medipix2 and Timepix detectors. It allows for
parallel communication with multiple interfaces, each measuring asynchronously with differ-
ent parameters. The output is a single ROS topic with uncalibrated images and acquisition
parameter metadata. A set of ROS services controls each interface. Individual parameters such
as bias voltage, clock, acquisition time, threshold, and pixel mode are set individually. Rospix
offers three modes of operation: single acquisition mode for capturing a single image, batch
mode for capturing a predetermined number of images, and continuous mode for capturing
images continuously in a loop. ROS nodes running concurrently with Rospix are expected to
provide additional functionalities such as visualization, acquisition control, calibration, log-
ging, and track classification.

To ensure communication robustness, Rospix automatically attempts to reset the con-
nection and continue with the acquisition in case of a communication error or interface recon-
nection. If reconnection fails, Rospix persistently continues its attempts. Additionally, Rospix
allows for the resetting of detector configuration before each acquisition to address power
supply instabilities that may result in the loss of equalization and corrupted measurements.

The development of the Rospix system was also motivated by the current efforts of the
Multi-robot Systems Group at CTU in Prague to perform automated localization and mapping

CTU in Prague Department of Cybernetics
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of radioactive sources using Uumanned aerial vehicle (UAV), where Rospix is being developed
specifically for ROS-equipped UAVs to enable onboard data processing and dynamic mission
adjustment.

2.3 Parameter estimation

2.3.1 Gaussian mixture model

The Gaussian Mixture Model (GMM) is a probabilistic model representing a probabil-
ity distribution as a mixture of multiple Gaussian distributions. GMMs are commonly used
for clustering analysis, aiming to assign data points to different clusters based on their sim-
ilarity or probability of belonging to each cluster. The density function of a GMM describes
the probability of observing a data point given the model’s parameters. The mean vector µ
represents the center of the i-th Gaussian component, indicating the location of the cluster it
represents. The covariance matrix Σ characterizes the spread and shape of the distribution.

Definition of multivariate Normal (Gaussian) distribution density function [43]:

f(x;µ,Σ) =
e−

1
2

(x−µ)Σ−1(x−µ)√
(2π)k|Σ|

, (2.1)

where x is the point from the dataset, µ is the component’s mean vector, and Σ is the
covariance matrix characterized component. Σ−1 represents the inverse of Σ and |Σ| represents
the determinant of Σ.

Mixture density

g(x) =

K∑
i=1

αif(x|µi,Σi), (2.2)

where
∑K

i=1 αi = 1. K is number of components and parameters (αi, µi,Σi) are the mixture
weight, mean vector and covariance matrix of i-th component.

2.3.2 Expectation-Maximization algorithm

GMMs use the Expectation–Maximization (EM) algorithm for parameter estimation.
The EM algorithm iteratively estimates the parameters (θ) of a model, starting from some
initial condition. Each iteration consists of an expectation step (E–step) and a maximization
step (M–step) [44]. In the E–step, it computes the probabilities of data points belonging
to each cluster based on the current parameter estimates. In the M–step, it updates the
parameters using the weighted data points based on the computed probabilities. Each iteration
improves the likelihood or leaves it unchanged. This process continues until convergence, where
the parameters stabilize and the likelihood no longer change. In this work, log-likelihood is
used to improve the numerical stability. It can be used because the natural logarithm is a
monotonically increasing function. The log–likelihood function is defined as:

L(θ) = log p(X|θ) =
N∑
i=1

log g(x), (2.3)

CTU in Prague Department of Cybernetics
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where θ represents the parameters of the GMM, X is the dataset, p(X|θ) is the likelihood
function, N is the number of measurements in dataset X and g(x) is the mixture density
function of the GMM.

The algorithm described above is shown on figure 2.2 and here:

Algorithm 1: EM algorithm

Data: Data Set X = {x1, ..., xN}
Result: Parameters θ = {α, µ,Σ} and log-likelihood L(θ)
θ, L(θ)← initialization;
while |L(θ)− L(θt−1)| > ε do

E-step: calculate the new posterior probabilities according to 2.4;
M-step: calculate the new parameters according to formulas 2.5, 2.6, 2.7;

end
return θ, L(θ);

The EM algorithm is self-consistent [45]. That means the algorithm converges to a stable
solution where further iterations do not significantly change the estimated parameters.

Posterior probability

τij =
f(xi|θt−1

j )αj∑M
l=1 f(xi|θt−1

l )αl
, (2.4)

where f(xi|Θt−1
j ) is a multivariate Gaussian distribution, xi is the i–th measurement from the

dataset, θt−1
j represents parameters of the j–th Gaussian component at (t − 1)–th iteration,

αj is the mixture weight parameter of the j–th Gaussian component and M is the number of
components.

Parameters of GMM [46]:

αtj =
1

N

N∑
i=1

τ t−1
ij , (2.5)

µtj =
1

αtjN

N∑
i=1

τ t−1
ij xi, (2.6)

Σt
j =

1

αtjN

N∑
i=1

τ t−1
ij (xi − µtj)(xi − µtj)T , (2.7)

where θj = (αtj , µ
t
j ,Σ

t
j) are the mixture weight, the mean vector, and the covariance matrix

of the j–th Gaussian component at the t–th iteration, N is the number of measurements in
the dataset, τ t−1

ij is the posterior probability of xi from j–th component at iteration t− 1, xi
is the i–th measurement from the dataset.

The EM algorithm for estimating mixture models offers three attractive features [47]:

1. Both algorithm steps can be computed analytically, eliminating the need for an opti-
mization procedure.

2. The resulting solution ensures that the parameters meet the necessary constraints: the
weighting parameters are guaranteed to be positive and sum up to one, while the co-
variance matrices are guaranteed to be positive-definite.

3. The method is capable of handling missing data. Even if certain elements of a training
example (x) are missing, the E-step can still utilize the available dimensions to establish

CTU in Prague Department of Cybernetics



8/32 2.3. PARAMETER ESTIMATION

a distribution over the hidden variable. In the M-step, the contribution of this data
point is limited to the dimensions of means and covariance matrices where the data
were observed.

Figure 2.2: Fitting a mixture of two Gaussians to 2D data. a) Initial model. b) E-step. For
each data point the posterior probability that was generated from each gaussian is calculated
(indicated by color of point) c) M-step. The mean, variance and weight of each Gaussian is
updated based on these posterior probabilities. Ellipse shows Mahalanobis distance of two.
Weight (thickness) of ellipse indicates weight of Gaussian. d-t) Further E-step and M-step
iterations [47]

.

2.3.3 Bayesian information criterion

The Bayesian Information Criterion (BIC), proposed by Schwartz [11], is a statistical
criterion employed to select the most suitable model from a collection of candidate models. A
candidate is a model that describes data. Each candidate is assumed to be associated with a
class of probability distributions with a specific parametric structure [48].

Maximum likelihood estimation tends to favor models with the largest number of com-
ponents because it maximizes the number of parameters and increases the ability to adapt

CTU in Prague Department of Cybernetics
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to the observed data. However, this approach can lead to overfitting. The BIC attempts to
find the model with the highest likelihood while penalizing models with many parameters.
Consequently, it favors simpler models in the selection process. It is beneficial in cases where
the number of candidate models is large, and the goal is to identify the best model among
them.

BIC = p ln(n)− 2 ln(L), (2.8)

where p is the number of free parameters, n is the number of measurements in dataset, L is
the log–likelihood function.

The number of free parameters for a GMM:

p = (k − 1) + kd+ k
d(d− 1)

2
, (2.9)

where k is number of components, d is dimension of data and

� k − 1 is number of mixture weight,
� kd is number of means,
� k d(d−1)

2 is number of parameters in covariance matrix [49].
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Chapter 3

Contribution

This thesis builds on the research of Melnykov and Melnykov [12] and extends their
approach for initializing clustering algorithms, particularly the Expectation-Maximization al-
gorithm. This general algorithm has been adapted for use aboard a drone designed to locate
multiple radioactive hotspots. Furthermore, a system for generating a flight plan for the drone
was further developed, during which data for this algorithm is collected by the Timepix on-
board radiation sensor. The procedure was tested on synthetic data, in a realistic Gazebo
simulator, in real experiments with a simulated radiation source.
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Chapter 4

Hotspot identification

This section presents a detailed solution to the problem of identifying radioactive hotspots
by an unmanned aerial vehicle (UAV). The approach is based on [12] but has been enriched
with an additional feature. The reason for introducing this feature is the way the data are
acquired by the UAV.

4.1 Mapping path generation

To locate the source of radioactivity, conducting an aerial survey over a designated area
is necessary. During the flight, data collection is performed utilizing the Timepix3 [26] sensor.
A comprehensive path-planning strategy is implemented to ensure thorough coverage of the
entire area. This strategy focuses on maximizing efficiency by preventing the drone from
revisiting any location more than once. The generated path consists of a series of parallel
lines, supplemented by connecting segments that link the intersections of these lines with the
boundary of the specified area.

4.1.1 User input

The required inputs from the user are:

� The vertices of the mapped area - entered counterclockwise (CCW), only a convex area
without holes is considered.

� The mapping density - represents the distance between the parallel lines, entered in
meters.

� The mapping direction - represents the direction of line generation, entered in radians,
with respect to the parent coordinate frame.

4.1.2 Finding intersections of the boundary area

A boundary area — the line segments connecting the area’s vertices — is produced
from the specified vertices. All lines and line segments are expressed in parametric form. The
first straight line is created from the drone’s starting point in the mapping direction. Then,
an algorithm for finding its intersections with the boundary follows. The following steps are
repeated for each boundary line segment:

1. It is checked to determine whether the current segment is parallel to the generated line.
2. If it is not, use the following equations to express the formula for the parameter to find

the intersection

xt+X = x′s+X ′, (4.1)
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yt+ Y = y′s+ Y ′, (4.2)

where (x, y) is the direction vector for the line, (X,Y ) is the point on the line, t is the
parameter by which the direction vector must be multiplied to find the intersection on
the line, (x′, y′) is the direction vector of the line segment, (X ′, Y ′) is the point where
the line segment starts, and s is the parameter by which the direction vector must be
multiplied to find the intersection on the line segment.
Equations 4.1 and 4.2 are parametric forms of the line and the line segment with equal
coordinates. The following equation is the resulting expression of the parameter s

s =
x(Y ′ − Y ) + y(X −X ′)

yx′ − xy′
. (4.3)

The parameter s is calculated because it can be used to determine whether the inter-
section lies on or off the line segment.

3. If the parameter lies in the interval [0, 1], the intersection between the boundary line
segment and the given line exists.

4. The intersection will be found by multiplying the direction vector by the parameter and
shifting the vertex of the line segment by it.

5. If the intersection is duplicated, it will not be considered. Duplication appears when two
consecutive boundary line segments have parameters 1 and 0. This case occurs when
the intersection is located at the boundary vertex.

The found intersections form a space filling path.

4.1.3 Generating straight lines

After slicing the boundary area using the aforementioned algorithm, a new line parallel
to the previous line is constructed. The distance between the lines is equal to the specified
mapping density. The steps for finding intersections and creating new lines are repeated as
long as an intersection is detected. If no intersection is found, new lines are created on the
opposite side of the first line, and the algorithm continues.

4.1.4 Order of waypoints

Before generating a new line, the program determines whether the newly added inter-
sections are in the correct order. Since the given area must be convex, a line can have at most
two intersections. They are sorted according to the last point on the path. The intersection
closer to this point will be added to the path first.

The created path is converted to a Path message and sent to the MRS UAV System
[38] which constructs a feasible trajectory based on the given path. The examples of a final
space filling path are shown in Figure 4.1.
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(a) Lateral step = 3, direction = -0.7854. (b) Lateral step = 4, direction = 0

(c) Lateral step = 3, direction = -0.7854. (d) Lateral step = 4, direction = -0.7854.

Figure 4.1: Examples of space filling paths created by the developed algorithm from Section
4.1.2. The lateral step represents the distance of parallel lines, and the direction represents
the angle in radians. In (b), the direction is 90◦, and in (a), (c), and (d), the direction is 45◦.

4.2 Clustering

The implemented program can compute the covariance matrix using the algorithm
from [12] in real time or after the experiment. In addition, it can combine the data from
the Timepix3 detector and odometry data. The program only considers a constant mapping
height which is specified by the user. Therefore, the data is represented in 2D to reduce the
computational complexity. The user can specify the algorithm update rate in Hz.

4.2.1 Combining radiation data with odometry

For the proper functioning of the algorithm, it is essential to know where the drone
detects the radioactive particle. Therefore, a structure was designed that stores the information
about the current particle and the drone’s position when the particle was captured. For each
particle, its own structure is created.

4.2.2 Initial step

In the beginning, a measurement that could be the center of the cluster is selected. For
a better result, the initial measurement is not chosen completely at random but according to
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the following steps:

1. Calculate the Euclidean distances between all measurements.
2. The measurements are sorted by the sum of the distances to the m nearest neighbors

(m is a parameter set by the user).
3. The measurements are then ranked from the lowest to the highest sum.
4. The probability of selecting individual measurements is

pi =
1
vi∑N
j=1

1
vj

, (4.4)

where pi is the probability of selecting the i-th measurement, N is the number of all
measurements, and vi is the rank of the i-th measurement.

The selected measurement becomes the center of the initializing circle. Its radius is the
distance from its furthest neighbor.

4.2.3 Computing the covariance matrix and mean

A rectangle is constructed around the initial circle. Then, the measurements that lie in
the rectangle are selected. The algorithm for computing the covariance matrix:

1. Find all measurements that lie in the rectangle.
2. Calculate the mean of all measurements’ positions from step 1. The result is a new

center of the ellipse.
3. Update the covariance matrix according to the formula:

Σ =

∑N
i=1 xix

T
i

N
, (4.5)

where N is the number of all measurements from step 1 and xi is the position of the
i-th measurement from step 1.

4. Construct the ellipse. Axis radii are scaled according to chi-squared confidence bound
(specified by the user).

5. Construct the rectangle around the ellipse.
6. Stop the algorithm if the estimated covariance matrix is the same as in the previous

iteration. Otherwise, continue with step 1.

The result of the algorithm is the initial covariance matrix and mean for the new cluster.
The mean value sought corresponds to the center of the ellipse. The algorithm steps are shown
in Figure 4.2.

4.2.4 Eliminating fake clusters

The residual points may create a fake cluster. Hence, it can be assumed that the spu-
rious clusters were identified at the end. The Expectation-maximization algorithm (EM) and
Bayesian information criterion (BIC) were used to detect them. Among the various Bayesian
motivated methods employed for determining the optimal number of components, BIC is con-
sidered the most effective approach for Gaussian Mixture Models (GMMs) [50]. The following
algorithm was used to eliminate fake clusters from the model:

C is the set of all clusters. clast represents the last element in the set of clusters. Two
models were created, namely Cfull (full model) and Cred (reduced model). Cfull includes all
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: The figures show the individual steps of the algorithm. Figure 4.2a shows the first
step of the algorithm, which produces an initialization circle with a radius given by the distance
of its furthest neighbour. The points that lie in the square drawn around the initialization circle
are used to compute the covariance ellipse in the next step of the algorithm. The algorithm
repeats until the covariance ellipse changes.

the clusters found in the previous steps of the algorithm. Cred is constructed by excluding the
most recently discovered cluster from the Cfull. bicred and bicfull hold the BIC value for both
models mentioned above.

The algorithm is executed while the reduced model consists of at least one cluster.
Otherwise, it would indicate at most one cluster, and thus no further elimination is needed.
During each iteration, the EM algorithm is applied to both models, and their respective BIC
values are calculated and compared. The initial value of the mixing parameters is:

αi =
1

N
, (4.6)

where αi is the mixing proportion of i-th cluster, and N is the number of clusters. Also
0 ≤ αi ≤ 1 and

∑N
i=1 αi = 1.

The algorithm stops if Cfull has a lower value BIC. Otherwise, the Cred is declared the
Cfull, and the last cluster of the set is removed from Cred. The result of the algorithm is a set
of clusters from which fake clusters have been removed.
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Algorithm 2: An algorithm for eliminating fake clusters

Data: C = {c1, ..., cN}
Result: Cnew
bicred, bicfull;
Cfull ← C;
Cred ← C \ clast;
while size(Cred) ≥ 1 do

EM(Cfull);
EM(Cred);
bicfull ← BIC(Cfull);
bicred ← BIC(Cred);
if bicfull < bicred then

break;
else

Cfull ← Cred;
Cred ← Cred \ clast;

end

end
Cnew ← Cfull

(a) BIC = 1178.03 (b) BIC = 1170.14 (c) BIC = 1250.9

Figure 4.3: Example of elimination of fake cluster. Figures show the different steps of the
algorithm. The algorithm reduces the number of components, based on the BIC. When the
BIC stops decreasing the algorithm terminates. Subsequently, the model shown in figure 4.3b
will be selected in this case.

4.2.5 Split detected ”islands” of clusters

In the presence of overlapping or closely situated clusters, the algorithm tends to merge
them into a single cluster. Clusters created in this way are called islands. It is necessary to
detect and partition such islands into the appropriate number of clusters. Therefore, Algorithm
3 was proposed, which uses a combination of an algorithm called emEM [10] and BIC. In the
short run, the EM algorithm terminates as soon as:

Lq − Lq−1

Lq − L0
≤ 10−2, (4.7)
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without waiting for convergence. Lq represents the observed log-likelihood at the q-th iteration.
These short runs are repeated x times from different randomly chosen points. The run with
the best likelihood will be selected, and the complete EM algorithm will be run on it.

Algorithm 3: An algorithm for splitting “islands“

Data: C = {c1, ..., cN}
Result: Cnew
for i← 1 to N do

Cact ← ci;
Cbest ← Cact;
EM(Cact);
bicact ← BIC(Cact);
bicbest ← bicact;
n← 1;
while bicact < bicbest do

Cbest ← Cact;
bicbest ← bicact;
n← n+ 1;
EMshort(Cact, n);
EM(Cact);
bicact ← BIC(Cact);

end
Cnew ← Cnew ∪ Cbest;

end

The algorithm inspects each cluster for the presence of an island. If an island is found,
a split is started. The island is divided into two clusters, and its BIC (bicact) is calculated and
compared with the best BIC (bicbest). The preferred model has the lowest BIC. The island
is partitioned until the number of clusters with the smallest BIC value is found. Example of
algorithm is shown in the figure 4.4.

(a) BIC = 1123.94 (b) BIC = 1120.4 (c) BIC = 1136.34

Figure 4.4: Example of splitting. The algorithm shown in the figures splits the component
until the BIC of the model stops decreasing. Finally, the model with the lowest BIC will be
selected in this case, figure 4.4b.
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4.2.6 An algorithm

The proposed algorithm utilizes the Gaussian mixture model (GMM) [3] to model the
radiation field because it offers a simple and computationally efficient way to describe it. It
identifies the quantity and positioning of static radioactive hotspots. The algorithm is designed
to work correctly even with sources that have different radiation intensities. The approach
can distinguish well-separated sources, where the radiation fields of different sources do not
overlap, and in certain conditions also sources whose radiation fields overlap. The algorithm
works according to the following steps:

1. Choose the initial measurement that becomes the center of the initial circle and calculate
its radius according to subsection 4.2.2.

2. Estimate parameters of the Gaussian mixture model from subsection 4.2.3
3. Exclude measurements that lie within the initial ellipse from the data set. The ellipse is

constructed from the parameters calculated above.
4. Go back to step 1. until only a few measurements remain (it is inappropriate to do

another cluster).
5. Eliminate fake clusters using the algorithm from subsection 4.2.4.
6. Split the identified cluster ”islands” into the appropriate number of clusters according

to the algorithm in the subsection 4.2.5.
7. Detect and exclude spurious clusters after splitting.

The last step of the above algorithm searches for the model with the lowest BIC. It
compares the BIC of the full model (that includes all found clusters) and the reduced model
(that removes only a single cluster while retaining the others). When the BIC of the reduced
model is smaller, it is marked as a full model. A reduced model is created as described above
and repeats until the model can no longer be reduced. The example of algorithm is shown in
the figure 4.5.

4.2.7 Weighting measurements

When the drone uses the space filling path from section 4.1, it slows down for each
sharp turn. In these sections, measurement density increases regardless of the actual radiation
intensity, which leads to distortions in the results. Measurement weighting is introduced to
improve the results.

A grid is created with cells across the entire area. Each cell contains the measurements
that were captured in this cell sector and the time the drone spent in the sector. The weight
(time from the cell that owns the measurement) is added to the structure from section 4.1.
A new callback function for mrs lib::subsribeHandler, which receives nav msgs::Odometry
messages, is created. It monitors in which cell the drone currently is and for how long it was
in which cell. Weighting is used in the calculation of the covariance matrix.

The following formula is now used to calculate the covariance matrix:

Σ =

∑N
i=1

xix
T
i

wi

N
, (4.8)

where N is the number of all measurements that lie in the rectangle, xi is the position of the
i-th measurement that lies in the rectangle, and wi is the weight of i-th measurement.
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(a) BIC = 1331.38 (b) BIC = 1319.16

(c) BIC = 1306.1 (d) BIC = 1325.98

Figure 4.5: Example of elimination after splitting. The algorithm iteratively tries to remove
each component and computes the BIC of the reduced model. The resulting model will have
the smallest BIC. Figure 4.5a shows the full model and Figure 4.5c shows the model with the
lowest BIC, i.e. the best model.
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Chapter 5

Results

This section demonstrates and tests the functionality of the proposed approach to ra-
dioactive source identification. We tested on artificial data, simulated data and datasets ob-
tained from experiments. Americium with various radiation intensity levels were used as ra-
dioactivity sources. It was investigated whether the approach proposed in Section 4.2 can
identify the number and location of radioactive outbreaks reliably even if the emitters are not
well-separated. The approach was tested on artificially generated data, simulation data and
real experiment data.

5.1 Generated data

A Gaussian Mixture Model (GMM) was used to model the radioactive decay, therefore
the initial testing was performed using randomly generated data that fitted the model. The
following scenarios were tested: two equally strong sources of radioactivity far apart and
overlapping, three equally strong sources far apart, partially overlapping, and finally, two
sources of different intensities. Test results are shown in the Figures 5.1 and 5.2.

(a) Two well-separated components of the same in-
tensity.

(b) Two partially overlapping components of differ-
ent intensities.

Figure 5.1: Results of the clustering algorithm presented in Section 4.2 tested on two GMM
components.

As is evident from the figures the algorithm worked very well in each case. It managed
to estimate the correct number of components and their parameters.
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(a) Three well-separated components of the same
intensity.

(b) Three partially overlapping components of the
same intensity.

Figure 5.2: Results of the clustering algorithm presented in Section 4.2 tested on three GMM
components.

5.2 Simulation

The simulation used the algorithm from Section 4.1 to generate a flight plan for the
UAV. Because of this type of path, false clusters were created in the split step 4.2.5. Clusters
were created along the lines that the UAV flew through. This was solved by identifying and
then penalizing these models in the final selection. Another challenge was that the algorithm
created a large cluster at the end that contained all the measurements that did not fall into
true clusters. This case is depicted in the Figure 5.3. It was solved by removing the cluster
when it was too large. The final results are shown in figures 5.4 and 5.5. The proposed approach
was tested on data where clusters partially overlap. Scenarios with emitters of the same and
different intensities, were tested.

Figure 5.3: Example of misidentification – creating a fake cluster.
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(a) (b)

Figure 5.4: Results of the clustering algorithm presented in Section 4.2 tested in simulation.
Two partially overlapping clusters with the same intensity.

Figure 5.5: Results of the clustering algorithm presented in Section 4.2 tested in simulation.
Two partially overlapping clusters with different intensity.

It can be seen from the figures above that the program has identified the number
and location of the radioactive hotspots satisfactorily. It had problems with determining the
intensity of the sources.

5.3 Experiment

The real experiment also used the flight plan generation from the Section 4.1. The
experiment used a DJI Flamewheel F450 frame, Intel NUCi7 computer, localization by GPS
and Pixhawk4 fight control unit [51]. The results presented in figure 5.6 are performed on the
dataset from the experiment showing the steps of the algorithm. The emitters used were of
the same intensity.
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(a) Result after the initialization step from Section
4.2.2.

(b) Result after split step from Section 4.2.5.

(c) Final result.

Figure 5.6: Results of the clustering algorithm presented in Section 4.2 tested on a dataset
from a real experiment. Two partially overlapping clusters with the same intensity.

Based on the figures provided, it is evident that the deviation from the actual solution
is relatively small.
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Chapter 6

Conclusion

The aim of the thesis was to search for radioactive hotspots using a UAV equipped with
a Timepix3 particle detector. The thesis was based on the research of Melnykov and Melnykov
[12] and their clustering algorithm. The algorithm was modified and extended for the needs
of UAVs to locate multiple radioactive hotspots. In addition, an algorithm was proposed to
generate a flight plan for the UAV for data collection. It enables the drone to cover the entire
predefined search area.

Due to the path generation method, new challenges that needed to be addressed:

1. The drone flies at different locations at different speeds. This was solved by weighting
the measurements.

2. The splitting step created fake clusters that only covered the area the drone flew (lines).
These clusters were identified, and the model that contains them was penalized.

3. In the final step, a fake cluster that contained measurements from both sources was not
eliminated. This cluster was identified and removed at the end.

The algorithm was tested on synthetic data in a realistic simulation and a dataset from
an experiment with a simulated radioactivity source. The algorithm was verified to perform
satisfactorily and can determine the number and location of radioactive hotspots.
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[32] C. Fröjdh, D. Krapohl, and G. Thungström, “Hard x-ray imaging and particle detection with
TIMEPIX3,” in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII, SPIE, vol. 9968,
2016, pp. 113–118.

[33] S Levasseur, B Dehning, S Gibson, H Sandberg, M Sapinski, K Sato, G Schneider, and J Storey,
“Development of a rest gas ionisation profile monitor for the CERN Proton Synchrotron based
on a Timepix3 pixel detector,” Journal of instrumentation, vol. 12, no. 02, p. C02050, 2017.

[34] D Turecek, L Pinsky, J Jakubek, Z Vykydal, N Stoffle, and S Pospisil, “Small dosimeter based
on Timepix device for International Space Station,” Journal of Instrumentation, vol. 6, no. 12,
p. C12037, 2011.

[35] M. Kroupa, T. Campbell-Ricketts, S. P. George, A. A. Bahadori, and L. S. Pinsky, “Particle
showers detected on ISS in Timepix pixel detectors,” Life Sciences in Space Research, 2023.

[36] T. Baca, M. J́ılek, I. Vertat, M. Urban, O. Nentvich, R. Filgas, C. Granja, A. Inneman, and V.
Daniel, “Timepix in LEO orbit onboard the VZLUSAT-1 nanosatellite: 1-year of space radiation
dosimetry measurements,” Journal of Instrumentation, vol. 13, no. 11, p. C11010, 2018.

[37] T. Baca, M. Jilek, P. Manek, P. Stibinger, V. Linhart, J. Jakubek, and M. Saska, “Timepix Ra-
diation Detector for Autonomous Radiation Localization and Mapping by Micro Unmanned Ve-
hicles,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 1129–1136. doi: 10.1109/IROS40897.2019.8968514.

[38] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, and M. Saska, “The MRS UAV
System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education
with Autonomous Unmanned Aerial Vehicles,” Journal of Intelligent & Robotic Systems, vol. 102,
no. 26, pp. 1–28, 1 May 2021.

[39] P. Estefo, J. Simmonds, R. Robbes, and J. Fabry, “The Robot Operating System: Package reuse
and community dynamics,” Journal of Systems and Software, vol. 151, pp. 226–242, 2019. doi:
https://doi.org/10.1016/j.jss.2019.02.024.

[40] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng, “ROS:
an open-source Robot Operating System,” vol. 3, Jan. 2009, pp. 1–6.

[41] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots with ROS: a practical introduction
to the Robot Operating System. O’Reilly Media, Inc., 2015.

[42] T. Baca, D. Turecek, R. McEntaffer, and R. Filgas, “Rospix: modular software tool for automated
data acquisitions of Timepix detectors on Robot Operating System,” Journal of Instrumentation,
vol. 13, no. 11, p. C11008, Nov. 2018. doi: 10.1088/1748-0221/13/11/C11008.

[43] Y. L. Tong, The multivariate normal distribution. Springer Science & Business Media, 2012,
pp. 2247–2254.

[44] R. M. Neal and G. E. Hinton, “A View of the Em Algorithm that Justifies Incremental, Sparse,
and other Variants,” in Learning in Graphical Models, M. I. Jordan, Ed. Dordrecht: Springer
Netherlands, 1998, pp. 355–368. doi: 10.1007/978-94-011-5014-9 12.

[45] S. K. Ng, T. Krishnan, and G. J. McLachlan, “The EM Algorithm,” in Handbook of Computa-
tional Statistics: Concepts and Methods, J. E. Gentle, W. K. Härdle, and Y. Mori, Eds. Berlin,
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